Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36360571

RESUMO

White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.

2.
Diagnostics (Basel) ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35741283

RESUMO

Cardiovascular diseases (CVDs) have been regarded as the leading cause of death with 32% of the total deaths around the world. Owing to the large number of symptoms related to age, gender, demographics, and ethnicity, diagnosing CVDs is a challenging and complex task. Furthermore, the lack of experienced staff and medical experts, and the non-availability of appropriate testing equipment put the lives of millions of people at risk, especially in under-developed and developing countries. Electronic health records (EHRs) have been utilized for diagnosing several diseases recently and show the potential for CVDs diagnosis as well. However, the accuracy and efficacy of EHRs-based CVD diagnosis are limited by the lack of an appropriate feature set. Often, the feature set is very small and unable to provide enough features for machine learning models to obtain a good fit. This study solves this problem by proposing the novel use of feature extraction from a convolutional neural network (CNN). An ensemble model is designed where a CNN model is used to enlarge the feature set to train linear models including stochastic gradient descent classifier, logistic regression, and support vector machine that comprise the soft-voting based ensemble model. Extensive experiments are performed to analyze the performance of different ratios of feature sets to the training dataset. Performance analysis is carried out using four different datasets and results are compared with recent approaches used for CVDs. Results show the superior performance of the proposed model with 0.93 accuracy, and 0.92 scores each for precision, recall, and F1 score. Results indicate both the superiority of the proposed approach, as well as the generalization of the ensemble model using multiple datasets.

3.
PeerJ Comput Sci ; 8: e1141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37346305

RESUMO

Online meeting applications (apps) have emerged as a potential solution for conferencing, education and meetings, etc. during the COVID-19 outbreak and are used by private companies and governments alike. A large number of such apps compete with each other by providing a different set of functions towards users' satisfaction. These apps take users' feedback in the form of opinions and reviews which are later used to improve the quality of services. Sentiment analysis serves as the key function to obtain and analyze users' sentiments from the posted feedback indicating the importance of efficient and accurate sentiment analysis. This study proposes the novel idea of self voting classification (SVC) where multiple variants of the same model are trained using different feature extraction approaches and the final prediction is based on the ensemble of these variants. For experiments, the data collected from the Google Play store for online meeting apps were used. Primarily, the focus of this study is to use a support vector machine (SVM) with the proposed SVC approach using both soft voting (SV) and hard voting (HV) criteria, however, decision tree, logistic regression, and k nearest neighbor have also been investigated for performance appraisal. Three variants of models are trained on a bag of words, term frequency-inverse document frequency, and hashing features to make the ensemble. Experimental results indicate that the proposed SVC approach can elevate the performance of traditional machine learning models substantially. The SVM obtains 1.00 and 0.98 accuracy scores, using HV and SV criteria, respectively when used with the proposed SVC approach. Topic-wise sentiment analysis using the latent Dirichlet allocation technique is performed as well for topic modeling.

4.
Sensors (Basel) ; 18(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241356

RESUMO

We present an Arduino-based automation system to control the streetlights based on solar rays and object's detection. We aim to design various systems to achieve the desired operations, which no longer require time-consuming manual switching of the streetlights. The proposed work is accomplished by using an Arduino microcontroller, a light dependent resistor (LDR) and infrared-sensors while, two main contributions are presented in this work. Firstly, we show that the streetlights can be controlled based on the night and object's detection. In which the streetlights automatically turn to DIM state at night-time and turn to HIGH state on object's detection, while during day-time the streetlights will remain OFF. Secondly, the proposed automated system is further extended to skip the DIM condition at night time, and streetlights turn ON based on the objects' detection only. In addition, an automatic door system is introduced to improve the safety measurements, and most importantly, a counter is set that will count the number of objects passed through the road. The proposed systems are designed at lab-scale prototype to experimentally validate the efficiency, reliability, and low-cost of the systems. We remark that the proposed systems can be easily tested and implemented under real conditions at large-scale in the near future, that will be useful in the future applications for automation systems and smart homes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...